Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters.

نویسندگان

  • Matthew R V Ross
  • Brian L McGlynn
  • Emily S Bernhardt
چکیده

Land use impacts are commonly quantified and compared using 2D maps, limiting the scale of their reported impacts to surface area estimates. Yet, nearly all land use involves disturbances below the land surface. Incorporating this third dimension into our estimates of land use impact is especially important when examining the impacts of mining. Mountaintop mining is the most common form of coal mining in the Central Appalachian ecoregion. Previous estimates suggest that active, reclaimed, or abandoned mountaintop mines cover ∼7% of Central Appalachia. While this is double the areal extent of development in the ecoregion (estimated to occupy <3% of the land area), the impacts are far more extensive than areal estimates alone can convey as the impacts of mines extend 10s to 100s of meters below the current land surface. Here, we provide the first estimates for the total volumetric and topographic disturbance associated with mining in an 11 500 km(2) region of southern West Virginia. We find that the cutting of ridges and filling of valleys has lowered the median slope of mined landscapes in the region by nearly 10 degrees while increasing their average elevation by 3 m as a result of expansive valley filling. We estimate that in southern West Virginia, more than 6.4km(3) of bedrock has been broken apart and deposited into 1544 headwater valley fills. We used NPDES monitoring datatsets available for 91 of these valley fills to explore whether fill characteristics could explain variation in the pH or selenium concentrations reported for streams draining these fills. We found that the volume of overburden in individual valley fills correlates with stream pH and selenium concentration, and suggest that a three-dimensional assessment of mountaintop mining impacts is necessary to predict both the severity and the longevity of the resulting environmental impacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mountaintop Removal Mining and Catchment Hydrology

Mountaintop mining and valley fill (MTM/VF) coal extraction, practiced in the Central Appalachian region, represents a dramatic landscape-scale disturbance. MTM operations remove as much as 300 m of rock, soil, and vegetation from ridge tops to access deep coal seams and much of this material is placed in adjacent headwater streams altering landcover, drainage network, and topography. In spite ...

متن کامل

Cumulative impacts of mountaintop mining on an Appalachian watershed.

Mountaintop mining is the dominant form of coal mining and the largest driver of land cover change in the central Appalachians. The waste rock from these surface mines is disposed of in the adjacent river valleys, leading to a burial of headwater streams and dramatic increases in salinity and trace metal concentrations immediately downstream. In this synoptic study we document the cumulative im...

متن کامل

Creating a More Perennial Problem? Mountaintop Removal Coal Mining Enhances and Sustains Saline Baseflows of Appalachian Watersheds.

Mountaintop removal coal mining (MTM) is a form of surface mining where ridges and mountain tops are removed with explosives to access underlying coal seams. The crushed rock material is subsequently deposited in headwater valley fills (VF). We examined how this added water storage potential affects streamflow using a paired watershed approach consisting of two sets of mined and unmined watersh...

متن کامل

The association between mountaintop mining and birth defects among live births in central Appalachia, 1996-2003.

Birth defects are examined in mountaintop coal mining areas compared to other coal mining areas and non-mining areas of central Appalachia. The study hypothesis is that higher birth-defect rates are present in mountaintop mining areas. National Center for Health Statistics natality files were used to analyze 1996-2003 live births in four Central Appalachian states (N=1,889,071). Poisson regress...

متن کامل

Geophysical imaging reveals topographic stress control of bedrock weathering.

Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth's surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2016